
Labor of Division (Episode III): Faster Unsigned Division by
Constants
ridiculous_fish

corydoras@ridiculousfish.com
October 19th, 2011

This is a technique fish thought up for improving the performance of unsigned integer division by certain "uncooperative"
constants. It does not seem to appear in the literature, nor is it implemented in gcc, llvm, or icc, so fish is optimistic that it is
original.

As is well known (and seen in a previous post), compilers optimize unsigned division by constants into multiplication by a
"magic number." But not all constants are created equal, and approximately 30% of divisors require magic numbers that are
one bit too large, which necessitates special handling (read: are slower). Of these 30%, slightly less than half (46%) are
even, which can be handled at a minimum of increased expense (see below); the remaining odd divisors (659 million,
including well known celebrity divisors like 7) need a relatively expensive "fixup" after the multiplication. Or so we used to
think. This post gives a variation on the usual algorithm that improves performance for these expensive divisors.

This post presents the algorithm, proves it is correct, proves that it applies in every case we care about, and demonstrates
that it is faster. It also contains a reference implementation of the full "magic number" algorithm, incorporating this and all
known techniques. In other words, it's so darn big that it requires a table of contents.

1. Background
2. Motivation
3. Proof of Correctness
4. Proof of Universality
5. Overflow Handling
6. Practical Implementation
7. Microbenchmark Results
8. Reference Code
9. Conclusion

Background

Unsigned integer division is one of the slowest operatins on a modern microprocessor. When the divisor is known at
compile time, optimizing compilers do not emit division instructions, but instead either a bit shift (for a power of 2), or a
multiplication by a sort of reciprocal (for non-powers of 2). This second case involves the identity:

As d is not a power of 2, is always a fraction. It is rounded up to an integer, which is called a "magic number" because
multiplying by it performs division, as if by magic. The rounding-up introduces error into the calculation, but we can reduce
that error by increasing k. If k is big enough, the error gets wiped out entirely by the floor, and so we always compute the
correct result.

The dividend (numerator) is typically an N bit unsigned integer, where N is the size of a hardware register. For most
divisors, k can be small enough that a valid magic number can also fit in N bits or fewer. But for many divisors, there is no
such magic number. 7, 14, 19, 31, 42...these divisors require an N+1 bit magic number, which introduces inefficiences, as
the magic number cannot fit in a hardware register.

Let us call such divisors "uncooperative." The algorithm presented here improves the performance of dividing by these
uncooperative divisors by finding a new magic number which is no more than N bits. The existing algorithm that generates
an N+1 bit magic number for uncooperative divisors will be referred to as the "round-up algorithm", because it rounds the
true magic number up. The version presented here will be called the "round-down algorithm". We will say that an algorithm
"fails" or "succeeds" according to whether it produces a magic number of N bits or fewer; we will show that either the
round-up or round-down algorithm (or both) must succeed for all divisors.

All quantities used in the proofs and discussion are non-negative integers.

⌊ ⌋ = ⌊ × ⌋ = ⌊ × ⌋n
d

n
d

2k

2k

2k

d
n

2k

2k

d

A Shift In Time Saves Fourteen

For completeness, it is worth mentioning one additional technique for uncooperative divisors that are even. Consider
dividing a 32 bit unsigned integer by 14. The smallest valid magic number for 14 is 33 bits, which is inefficient. However,
instead of dividing by 14, we can first divide by 2, and then by 7. While 7 is also uncooperative, the divide by 2 ensures the
dividend is only a 31 bit number. Therefore the magic number for the subsequent divide-by-7 only needs to be 32 bits,
which can be handled efficiently.

This technique effectively optimizes division by even divisors, and is incorporated in the reference code provided later.
Now we present a technique applicable for odd divisors.

Motivation (aka What Goes Up Can Also Go Down)

First, an appeal to intuition. A divisor is uncooperative in the round-up algorithm because the rounding-up produces a poor
approximation. That is, is just slightly larger than some integer, so the approximation is off by nearly one, which

is a lot. It stands to reason, then, that we could get a better approximation by floor instead of ceil: .

A naïve attempt to apply this immediately runs into trouble. Let d be any non-power-of-2 divisor, and consider trying to
divide d by itself by multiplying with this magic number:

The result is too small.

(Could we replace the outer floor by a ceil? The floor is implemented by a right shift, which throws away the bits that are
shifted off. We could conjure up a "rounding up" right shift, and that might work, though it would likely be more expensive
than the instructions it replaces.)

So rounding down causes us to underestimate the result. What if we tried to counteract that by incrementing the numerator
first?

This is the round-down algorithm.

Proof of Correctness

First we must show that the round-down algorithm actually works. We proceed much like the proof for the round-up
algorithm. We have a known constant d and a runtime variable n, both N bit values. We want to find some k that ensures:

where:

Introduce an integer e which represents the error produced by the floor:

2k

d
⌈ ⌉2k

d

m = ⌊ ⌋2k

d

⌊ ⌋ < ⟹2k

d
2k

d

⌊ ⌋ × < × ⟹2k

d
d

2k

2k

d
d

2k

⌊⌊ ⌋ × ⌋ < 12k

d
d

2k

⌊ ⌋ ⌊⌊ ⌋ × ⌋n
d

=
? 2k

d

n+1
2k

⌊ ⌋ = ⌊m × ⌋n
d

n+1
2k

m = ⌊ ⌋
2k

d

0 ≤ n < 2N

0 < d < 2N

d not a power of 2

m = ⌊ ⌋ =2k

d
−e2k

d

A Shift In Time Saves Fourteen

For completeness, it is worth mentioning one additional technique for uncooperative divisors that are even. Consider
dividing a 32 bit unsigned integer by 14. The smallest valid magic number for 14 is 33 bits, which is inefficient. However,
instead of dividing by 14, we can first divide by 2, and then by 7. While 7 is also uncooperative, the divide by 2 ensures the
dividend is only a 31 bit number. Therefore the magic number for the subsequent divide-by-7 only needs to be 32 bits,
which can be handled efficiently.

This technique effectively optimizes division by even divisors, and is incorporated in the reference code provided later.
Now we present a technique applicable for odd divisors.

Motivation (aka What Goes Up Can Also Go Down)

First, an appeal to intuition. A divisor is uncooperative in the round-up algorithm because the rounding-up produces a poor
approximation. That is, is just slightly larger than some integer, so the approximation is off by nearly one, which

is a lot. It stands to reason, then, that we could get a better approximation by floor instead of ceil: .

A naïve attempt to apply this immediately runs into trouble. Let d be any non-power-of-2 divisor, and consider trying to
divide d by itself by multiplying with this magic number:

The result is too small.

(Could we replace the outer floor by a ceil? The floor is implemented by a right shift, which throws away the bits that are
shifted off. We could conjure up a "rounding up" right shift, and that might work, though it would likely be more expensive
than the instructions it replaces.)

So rounding down causes us to underestimate the result. What if we tried to counteract that by incrementing the numerator
first?

This is the round-down algorithm.

Proof of Correctness

First we must show that the round-down algorithm actually works. We proceed much like the proof for the round-up
algorithm. We have a known constant d and a runtime variable n, both N bit values. We want to find some k that ensures:

where:

Introduce an integer e which represents the error produced by the floor:

2k

d
⌈ ⌉2k

d

m = ⌊ ⌋2k

d

⌊ ⌋ < ⟹2k

d
2k

d

⌊ ⌋ × < × ⟹2k

d
d

2k

2k

d
d

2k

⌊⌊ ⌋ × ⌋ < 12k

d
d

2k

⌊ ⌋ ⌊⌊ ⌋ × ⌋n
d

=
? 2k

d

n+1
2k

⌊ ⌋ = ⌊m × ⌋n
d

n+1
2k

m = ⌊ ⌋
2k

d

0 ≤ n < 2N

0 < d < 2N

d not a power of 2

m = ⌊ ⌋ =2k

d
−e2k

d

Apply some algebra:

We hope that this equals . Within the floor, we see the result, plus two terms of opposite signs. We want the
combination of those terms to cancel out to something at least zero, but small enough to be wiped out by the floor. Let us
compute the fractional contribution of each term, and show that it is at least zero but less than one.

The fractional contribution of the term can be as small as zero and as large as . Therefore, in order to keep the whole
fractional part at least zero but below one, we require:

The term is always positive, so the is easily satisfied. It remains to show it is at least zero. Rearranging:

This is very similar to the condition required in the round-up algorithm! Let's continue to simplify, using the fact that n <
2N.

This is the condition that guarantees that our magic number m works. In summary, pick some k ! N, and compute
. If the resulting e " 2k-N, the algorithm is guaranteed to produce the correct result for all N-bit dividends.

Proof of Universality (aka Your Weakness Is My Strength)

When will this condition be met? Recall the hand-waving from before: the round-up algorithm failed because rounding up
produced a poor approximation, so we would expect rounding down to produce a good approximation, which would make
the round-down algorithm succeed. Optimistically, we'd hope that round-down will succeed any time round-up fails! Indeed
that is the case, and we can formally prove it now.

Here eup refers to the difference produced by rounding 2k up to a multiple of d, as in the round-up algorithm, while edown
refers to the difference produced by rounding down to a multiple of d as in round-down. An immediate consequence is eup +
edown = d.

Recall from the round-up algorithm that we try successive values for k, with the smallest k guaranteed to work equal to

0 < e < d

⌊m × ⌋
n + 1

2k
= ⌊ × ⌋

− e2k

d

n + 1

2k

= ⌊ × ⌋
n + 1

d

− e2k

2k

= ⌊ × (1 −)⌋
n + 1

d

e

2k

= ⌊ − × ⌋
n + 1

d

n + 1
d

e

2k

= ⌊ + − × ⌋
n

d

1
d

e

d

n + 1

2k

⌊ ⌋n
d

n
d

d−1
d

0 ≤ − × <1
d

e
d

n+1
2k

1
d

×e
d

n+1
2k < 1

d

0 ≤ − × ⟹ × ≤1
d

e
d

n+1
2k

e
d

n+1
2k

1
d

× ≤e
d

n+1
2k

1
d

e × ≤ 1n+1
2k

≤ 1e

2k−N

e ≤ 2k−N

e = mod d2k

N + ⌈lo d⌉2

Apply some algebra:

We hope that this equals . Within the floor, we see the result, plus two terms of opposite signs. We want the
combination of those terms to cancel out to something at least zero, but small enough to be wiped out by the floor. Let us
compute the fractional contribution of each term, and show that it is at least zero but less than one.

The fractional contribution of the term can be as small as zero and as large as . Therefore, in order to keep the whole
fractional part at least zero but below one, we require:

The term is always positive, so the is easily satisfied. It remains to show it is at least zero. Rearranging:

This is very similar to the condition required in the round-up algorithm! Let's continue to simplify, using the fact that n <
2N.

This is the condition that guarantees that our magic number m works. In summary, pick some k ! N, and compute
. If the resulting e " 2k-N, the algorithm is guaranteed to produce the correct result for all N-bit dividends.

Proof of Universality (aka Your Weakness Is My Strength)

When will this condition be met? Recall the hand-waving from before: the round-up algorithm failed because rounding up
produced a poor approximation, so we would expect rounding down to produce a good approximation, which would make
the round-down algorithm succeed. Optimistically, we'd hope that round-down will succeed any time round-up fails! Indeed
that is the case, and we can formally prove it now.

Here eup refers to the difference produced by rounding 2k up to a multiple of d, as in the round-up algorithm, while edown
refers to the difference produced by rounding down to a multiple of d as in round-down. An immediate consequence is eup +
edown = d.

Recall from the round-up algorithm that we try successive values for k, with the smallest k guaranteed to work equal to

0 < e < d

⌊m × ⌋
n + 1

2k
= ⌊ × ⌋

− e2k

d

n + 1

2k

= ⌊ × ⌋
n + 1

d

− e2k

2k

= ⌊ × (1 −)⌋
n + 1

d

e

2k

= ⌊ − × ⌋
n + 1

d

n + 1
d

e

2k

= ⌊ + − × ⌋
n

d

1
d

e

d

n + 1

2k

⌊ ⌋n
d

n
d

d−1
d

0 ≤ − × <1
d

e
d

n+1
2k

1
d

×e
d

n+1
2k < 1

d

0 ≤ − × ⟹ × ≤1
d

e
d

n+1
2k

e
d

n+1
2k

1
d

× ≤e
d

n+1
2k

1
d

e × ≤ 1n+1
2k

≤ 1e

2k−N

e ≤ 2k−N

e = mod d2k

N + ⌈lo d⌉2 . Unfortunately, this k produces a magic number of N+1 bits, and so too large to fit in a hardware register.
Let's consider the k just below it, which produces a magic number of N bits:

Assume that d is uncooperative, i.e. the magic number for this power was not valid in the round-up algorithm. It would have
been valid if ; because it was not valid we must have . Substituting in:

Thus we've satisfied the condition determined in the proof of correctness. This is an important and remarkable result: the
round-down algorithm is guaranteed to have an efficient magic number whenever round-up does not. If the implementation
of round-down can be shown to be more efficient, the overflow case for the round-up algorithm can be discarded entirely.

Recap

Here's the practical algorithm. Given a dividend n and a fixed divisor d, where 0 " n < 2N and 0 < d < 2N, and where the
usual round-up algorithm failed to find an N-bit magic number:

1. Consider in turn values of p in the range 0 through , inclusive.
2. If , then we have found a working p. The last value in the range is guaranteed to work.

3. Once we have a working p, precompute the magic number , which will be strictly less than 2N.

4. Compute . This is typically implemented via a "high multiply" instruction.
5. Perform any remaining shift: .

Overflow Handling

This algorithm has a wrinkle. Because n is an N-bit number, it may be as large as 2N - 1, in which event the n+1 term will
be an N+1 bit number. If the value is simply incremented in an N-bit register, the dividend will wrap to zero, and the
quotient will in turn be zero. Here we present two strategies for efficiently handling the possibility of modulo overflow.

Distributed Multiply Strategy

An obvious approach is to distribute the multiply through, i.e.:

This is a 2N-bit quantity and so cannot overflow. For efficient implementation, this requires that the low half of the m x n
product be available "for free," so that the sum can be performed and any carry transmitted to the high half. Many modern
architectures produce both halves with one instruction, such as Intel x86 (the MUL instruction) or ARM (UMULL). It is also
available if the register width is twice the bit size of the type, e.g. performing a 32 bit divide on a 64 bit processor.

Saturating Increment Strategy

However, other processors compute the low and high halves separately, such as PowerPC; in this case computing the lower
half of the product would be prohibitively expensive, and so a different strategy is needed. A second, surprising approach is
to simply elide the increment if n is already at its maximum value, i.e. replace the increment with a "saturating increment"
defined by:

N + ⌈lo d⌉g2

k = N + ⌈lo d⌉ − 1 = N + ⌊lo d⌋g2 g2

<eup 2⌊lo d⌋g2 ≥eup 2⌊lo d⌋g2

eup

d − edown

edown

edown

edown

edown

edown

≥ ⟹2⌊lo d⌋g2

≥ ⟹2⌊lo d⌋g2

≤ d − ⟹2⌊lo d⌋g2

≤ − ⟹2⌈lo d⌉g2 2⌊lo d⌋g2

≤ 2 × − ⟹2⌊lo d⌋g2 2⌊lo d⌋g2

≤ ⟹2⌊lo d⌋g2

≤ 2k−N

⌊lo d⌋g2

 mod d ≤2N+p 2p

m = ⌊ ⌋2N+p

d

q = (m × (n + 1)) ≫ N

q = q ≫ p

m × (n + 1) = m × n + m

SaturInc(x) = {

. Unfortunately, this k produces a magic number of N+1 bits, and so too large to fit in a hardware register.
Let's consider the k just below it, which produces a magic number of N bits:

Assume that d is uncooperative, i.e. the magic number for this power was not valid in the round-up algorithm. It would have
been valid if ; because it was not valid we must have . Substituting in:

Thus we've satisfied the condition determined in the proof of correctness. This is an important and remarkable result: the
round-down algorithm is guaranteed to have an efficient magic number whenever round-up does not. If the implementation
of round-down can be shown to be more efficient, the overflow case for the round-up algorithm can be discarded entirely.

Recap

Here's the practical algorithm. Given a dividend n and a fixed divisor d, where 0 " n < 2N and 0 < d < 2N, and where the
usual round-up algorithm failed to find an N-bit magic number:

1. Consider in turn values of p in the range 0 through , inclusive.
2. If , then we have found a working p. The last value in the range is guaranteed to work.

3. Once we have a working p, precompute the magic number , which will be strictly less than 2N.

4. Compute . This is typically implemented via a "high multiply" instruction.
5. Perform any remaining shift: .

Overflow Handling

This algorithm has a wrinkle. Because n is an N-bit number, it may be as large as 2N - 1, in which event the n+1 term will
be an N+1 bit number. If the value is simply incremented in an N-bit register, the dividend will wrap to zero, and the
quotient will in turn be zero. Here we present two strategies for efficiently handling the possibility of modulo overflow.

Distributed Multiply Strategy

An obvious approach is to distribute the multiply through, i.e.:

This is a 2N-bit quantity and so cannot overflow. For efficient implementation, this requires that the low half of the m x n
product be available "for free," so that the sum can be performed and any carry transmitted to the high half. Many modern
architectures produce both halves with one instruction, such as Intel x86 (the MUL instruction) or ARM (UMULL). It is also
available if the register width is twice the bit size of the type, e.g. performing a 32 bit divide on a 64 bit processor.

Saturating Increment Strategy

However, other processors compute the low and high halves separately, such as PowerPC; in this case computing the lower
half of the product would be prohibitively expensive, and so a different strategy is needed. A second, surprising approach is
to simply elide the increment if n is already at its maximum value, i.e. replace the increment with a "saturating increment"
defined by:

N + ⌈lo d⌉g2

k = N + ⌈lo d⌉ − 1 = N + ⌊lo d⌋g2 g2

<eup 2⌊lo d⌋g2 ≥eup 2⌊lo d⌋g2

eup

d − edown

edown

edown

edown

edown

edown

≥ ⟹2⌊lo d⌋g2

≥ ⟹2⌊lo d⌋g2

≤ d − ⟹2⌊lo d⌋g2

≤ − ⟹2⌈lo d⌉g2 2⌊lo d⌋g2

≤ 2 × − ⟹2⌊lo d⌋g2 2⌊lo d⌋g2

≤ ⟹2⌊lo d⌋g2

≤ 2k−N

⌊lo d⌋g2

 mod d ≤2N+p 2p

m = ⌊ ⌋2N+p

d

q = (m × (n + 1)) ≫ N

q = q ≫ p

m × (n + 1) = m × n + m

SaturInc(x) = {
It is not obvious why this should work: we needed the increment in the first place, so how can we just skip it? We must
show that replacing increment with SaturInc will compute the correct result for 2N - 1. A proof of that is presented below.

Proof of Correctness when using Saturating Increment

Consider the practical algorithm presented above, with the +1 replaced by saturating increment. If , then
saturating increment is the same as +1, so the proof from before holds. Therefore assume that , so that
incrementing n would wrap to 0.

By inspection, . Because the algorithm has no other dependence on n, replacing
the +1 with SaturInc effectively causes the algorithm to compute the quotient when n = 2N-1.

Now d either is or is not a factor of 2N-1. Let's start by assuming it is not a factor. It is easy to prove that, if x and y are
positive integers and y is not a factor of x, then . Therefore it must be true that , so
the algorithm computes the correct quotient.

Now let us consider the case where d is a factor of 2N-1. We will prove that d is cooperative, i.e. the round-up algorithm
produced an efficient N-bit result for d, and therefore the round-down algorithm is never employed. Because d is a factor of
2N-1, we have . Consider once again the case of the "last N-bit magic number," i.e.:

Recall that the round-up algorithm computes . This power is acceptable to the round-up algorithm
if . Consider:

Substituting in:

Thus the power k is acceptable to the round-up algorithm, so d is cooperative and the round-down algorithm is never
employed. Thus a saturating increment is acceptable for all uncooperative divisors. Q.E.D.

(As an interesting aside, this last proof demonstrates that all factors of 2N-1 "just barely" have efficient N-bit magic
numbers. For example, the divisor 16,711,935 is a factor of 232-1, and its magic number, while N bits, requires a shift of 23,
which is large; in fact it is the largest possible shift, as the floor of the base 2 log of that divisor. But increase the divisor by
just one (16711936) and only a 16 bit shift is necessary.)

In summary, distributing the multiplication or using a saturating increment are both viable strategies for avoiding wrapping
in the n+1 expression, ensuring that the algorithm works over the whole range of dividends. Implementations can use
whichever technique is most efficient1.

Practical Implementation

The discussion so far is only of theoretical interest; it becomes of practical interest if the round-down algorithm can be
shown to outperform round-up on uncooperative divisors. This is what will be demonstrated below for x86 processors.

SaturInc(x) = { x + 1
x

 if x < − 12N

 if x = − 12N

n < − 12N

n = − 12N

SaturInc(− 1) = SaturInc(− 2)2N 2N

⌊ ⌋−22N

d

⌊ ⌋ = ⌊ ⌋x
y

x−1
y ⌊ ⌋ = ⌊ ⌋−12N

d
−22N

d

 mod d = 12N

k = N + ⌈lo d⌉ − 1 = N + ⌊lo d⌋g2 g2

= d − (mod d)eup 2k

≤ =eup 2k−N 2⌊lo d⌋g2

 mod d2k = mod d2N+⌊lo d⌋g2

= × mod d2N 2⌊lo d⌋g2

= 1 × mod d2⌊lo d⌋g2

= 2⌊lo d⌋g2

eup

eup

= d − 2⌊lo d⌋g2

< −2⌈lo d⌉g2 2⌊lo d⌋g2

< 2 × −2⌊lo d⌋g2 2⌊lo d⌋g2

< 2⌊lo d⌋g2

It is not obvious why this should work: we needed the increment in the first place, so how can we just skip it? We must
show that replacing increment with SaturInc will compute the correct result for 2N - 1. A proof of that is presented below.

Proof of Correctness when using Saturating Increment

Consider the practical algorithm presented above, with the +1 replaced by saturating increment. If , then
saturating increment is the same as +1, so the proof from before holds. Therefore assume that , so that
incrementing n would wrap to 0.

By inspection, . Because the algorithm has no other dependence on n, replacing
the +1 with SaturInc effectively causes the algorithm to compute the quotient when n = 2N-1.

Now d either is or is not a factor of 2N-1. Let's start by assuming it is not a factor. It is easy to prove that, if x and y are
positive integers and y is not a factor of x, then . Therefore it must be true that , so
the algorithm computes the correct quotient.

Now let us consider the case where d is a factor of 2N-1. We will prove that d is cooperative, i.e. the round-up algorithm
produced an efficient N-bit result for d, and therefore the round-down algorithm is never employed. Because d is a factor of
2N-1, we have . Consider once again the case of the "last N-bit magic number," i.e.:

Recall that the round-up algorithm computes . This power is acceptable to the round-up algorithm
if . Consider:

Substituting in:

Thus the power k is acceptable to the round-up algorithm, so d is cooperative and the round-down algorithm is never
employed. Thus a saturating increment is acceptable for all uncooperative divisors. Q.E.D.

(As an interesting aside, this last proof demonstrates that all factors of 2N-1 "just barely" have efficient N-bit magic
numbers. For example, the divisor 16,711,935 is a factor of 232-1, and its magic number, while N bits, requires a shift of 23,
which is large; in fact it is the largest possible shift, as the floor of the base 2 log of that divisor. But increase the divisor by
just one (16711936) and only a 16 bit shift is necessary.)

In summary, distributing the multiplication or using a saturating increment are both viable strategies for avoiding wrapping
in the n+1 expression, ensuring that the algorithm works over the whole range of dividends. Implementations can use
whichever technique is most efficient1.

Practical Implementation

The discussion so far is only of theoretical interest; it becomes of practical interest if the round-down algorithm can be
shown to outperform round-up on uncooperative divisors. This is what will be demonstrated below for x86 processors.

SaturInc(x) = { x + 1
x

 if x < − 12N

 if x = − 12N

n < − 12N

n = − 12N

SaturInc(− 1) = SaturInc(− 2)2N 2N

⌊ ⌋−22N

d

⌊ ⌋ = ⌊ ⌋x
y

x−1
y ⌊ ⌋ = ⌊ ⌋−12N

d
−22N

d

 mod d = 12N

k = N + ⌈lo d⌉ − 1 = N + ⌊lo d⌋g2 g2

= d − (mod d)eup 2k

≤ =eup 2k−N 2⌊lo d⌋g2

 mod d2k = mod d2N+⌊lo d⌋g2

= × mod d2N 2⌊lo d⌋g2

= 1 × mod d2⌊lo d⌋g2

= 2⌊lo d⌋g2

eup

eup

= d − 2⌊lo d⌋g2

< −2⌈lo d⌉g2 2⌊lo d⌋g2

< 2 × −2⌊lo d⌋g2 2⌊lo d⌋g2

< 2⌊lo d⌋g2

x86 processors admit an efficient saturating increment via the two-instruction sequence add 1; sbb 0; (i.e. "add; subtract 0
with borrow"). They also admit an efficient distributed multiply. The author implemented this optimization in the LLVM
compiler using both strategies in turn, and then compiled the following C code which simply divides a value by 7, using
clang -O3 -S -arch i386 -fomit-frame-pointer (this last flag for brevity):

unsigned int sevens(unsigned int x) {
 return x / 7;
}

Here is a comparison of the generated i386 assembly, with corresponding instructions aligned, and instructions that are
unique to one or the other algorithm shown in red. (x86-64 assembly produced essentially the same insights, and so is
omitted.)

Round-Up (Stock LLVM)
_sevens:
 movl 4(%esp), %ecx

 movl $613566757, %edx
 movl %ecx, %eax
 mull %edx
 subl %edx, %ecx
 shrl %ecx
 addl %edx, %ecx
 shrl $2, %ecx
 movl %ecx, %eax
 ret

Distributive
_sevens:

 movl $1227133513, %eax

 mull 4(%esp)
 addl $1227133513, %eax
 adcl $0, %edx

 shrl %edx
 movl %edx, %eax
 ret

Saturating Increment
_sevens:
 movl 4(%esp), %eax
 addl $1, %eax
 sbbl $0, %eax
 movl $1227133513, %ecx

 mull %ecx

 shrl %edx
 movl %edx, %eax
 ret

The round-down algorithms not only avoid the three-instruction overflow handling, but also avoid needing to store the
dividend past the multiply (notice the highlighted MOVL instruction in the round-up algorithm). The result is a net saving
of two instructions. Also notice that the variants require fewer registers, which suggests there might be even more payoff
(i.e. fewer register spills) when the divide is part of a longer code sequence.

(In the distributive variant the compiler has made the dubious choice to emit the same immediate twice instead of placing it
in a register. This is especially deleterious in the loop microbenchmark shown below, because loading the immediate into
the register could be hoisted out of the loop. To address this, the microbenchmark tests both the assembly as generated by
LLVM, and a version tweaked by hand to address this suboptimal codegen.)

As illustrated, both strategies require only two instructions on x86, which is important because the overhead of the round-up
algorithm is three to four instructions. Many processor architectures admit a two-instruction saturating increment through
the carry flag2.

Microbenchmark

To measure the performance, the author compiled a family of functions. Each function accepts an array of unsigned ints,
divides them by a particular uncooperative divisor, and returns the sum; for example:

uint divide_7(const uint *x, size_t count) {
 uint result = 0;
 while (count--) {
 result += *x++ / 7;
 }
 return result;
}

Each function in the family had very similar machine code; a representative sample is:

Standard Round-Up
_divide_7:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 pushl %edi
 pushl %esi
 xorl %ecx, %ecx
 movl 12(%ebp), %edi
 testl %edi, %edi
 je LBB1_3
 movl 8(%ebp), %ebx

LBB1_2:
 movl (%ebx), %esi
 movl %esi, %eax
 movl $613566757, %edx
 mull %edx
 subl %edx, %esi
 shrl %esi
 addl %edx, %esi
 shrl $2, %esi
 addl %esi, %ecx
 addl $4, %ebx
 decl %edi
 jne LBB1_2
LBB1_3:
 movl %ecx, %eax
 popl %esi
 popl %edi
 popl %ebx
 popl %ebp
 ret

Distributive (hand tweaked)
_divide_7:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 pushl %edi
 pushl %esi
 xorl %ecx, %ecx
 movl 12(%ebp), %esi
 testl %esi, %esi
 je LBB0_3
 movl 8(%ebp), %edi
 movl $1227133513, %ebx
LBB0_2:
 movl (%edi), %eax

 mull %ebx
 addl %ebx, %eax
 adcl $0, %edx

 shrl %edx
 addl %edx, %ecx
 addl $4, %edi
 decl %esi
 jne LBB0_2
LBB0_3:
 movl %ecx, %eax
 popl %esi
 popl %edi
 popl %ebx
 popl %ebp
 ret

Saturating Increment
_divide_7:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 pushl %edi
 pushl %esi
 xorl %ecx, %ecx
 movl 12(%ebp), %esi
 testl %esi, %esi
 je LBB1_3
 movl 8(%ebp), %edi
 movl $1227133513, %ebx
LBB1_2:
 movl (%edi), %eax
 addl $1, %eax
 sbbl $0, %eax
 mull %ebx

 shrl %edx
 addl %edx, %ecx
 addl $4, %edi
 decl %esi
 jne LBB1_2
LBB1_3:
 movl %ecx, %eax
 popl %esi
 popl %edi
 popl %ebx
 popl %ebp
 ret

A simple test harness was constructed and the above functions were benchmarked to estimate the time per divide. The
benchmark was compiled with clang on -O3, and run on a 2.93 GHz Core i7 iMac. Test runs were found to differ by less
than .1%.

Nanoseconds Per Divide

Divisor Round Up Saturating Increment Distribute (as generated) Distribute (hand tweaked)

i386 7 1.632 1.484 9.1% 1.488 8.9% 1.433 12.2%
uint32 37 1.631 1.483 9.1% 1.486 8.9% 1.433 12.1%

123 1.633 1.484 9.1% 1.488 8.9% 1.432 12.3%
763 1.632 1.483 9.1% 1.487 8.9% 1.432 12.2%

1247 1.633 1.484 9.1% 1.491 8.7% 1.433 12.2%
9305 1.631 1.484 9.0% 1.491 8.6% 1.439 11.7%

13307 1.632 1.483 9.1% 1.489 8.7% 1.437 11.9%
52513 1.631 1.483 9.1% 1.490 8.7% 1.432 12.2%

60978747 1.631 1.484 9.0% 1.488 8.8% 1.434 12.1%
106956295 1.631 1.484 9.0% 1.489 8.7% 1.433 12.1%

x86_64 7 1.537 1.307 14.9% 1.548 -0.7% 1.362 11.4%
uint32 37 1.538 1.307 15.0% 1.548 -0.7% 1.362 11.4%

123 1.537 1.319 14.2% 1.547 -0.6% 1.361 11.5%
763 1.536 1.306 15.0% 1.547 -0.8% 1.356 11.7%

1247 1.538 1.322 14.1% 1.549 -0.7% 1.358 11.7%
9305 1.543 1.322 14.3% 1.550 -0.5% 1.361 11.8%

13307 1.545 1.322 14.4% 1.550 -0.3% 1.357 12.1%
52513 1.541 1.307 15.2% 1.550 -0.6% 1.361 11.7%

60978747 1.538 1.322 14.0% 1.549 -0.7% 1.358 11.7%
106956295 1.537 1.322 14.0% 1.551 -0.9% 1.360 11.5%

x86_64 7 1.823 1.588 12.9% 1.505 17.4% n/a

uint64 39 1.821 1.589 12.7% 1.506 17.3% n/a

123 1.821 1.592 12.6% 1.506 17.3% n/a

763 1.822 1.592 12.6% 1.505 17.4% n/a

1249 1.822 1.589 12.8% 1.506 17.4% n/a

9311 1.822 1.587 12.9% 1.507 17.3% n/a

11315 1.822 1.588 12.8% 1.506 17.4% n/a

52513 1.823 1.591 12.7% 1.506 17.4% n/a

60978749 1.822 1.590 12.7% 1.507 17.3% n/a

106956297 1.821 1.588 12.8% 1.506 17.3% n/a

Microbenchmark results for tested division algorithms on a Core i7. The top group is for 32 bit division in a 32 bit binary,
while the bottom two groups are 32 bit and 64 bit division (respectively) in a 64 bit binary.

Times are in nanoseconds per divide (lower is better). Percentages are percent improvement from the Round Up algorithm
(higher is better).

These results indicate that the round-down algorithms are indeed faster by 9%-17% (excluding the crummy codegen, which
should be fixed in the compiler). The benchmark source code is available at
http://ridiculousfish.com/files/division_benchmarks.tar.gz.

Extension to Signed Division

A natural question is whether the same optimization could improve signed division; unfortunately it appears that it does not,
for two reasons:

The increment of the dividend must become an increase in the magnitude, i.e. increment if n > 0, decrement if n < 0.
This introduces an additional expense.
The penalty for an uncooperative divisor is only about half as much in signed division, leaving a smaller window for
improvements.

Thus it appears that the round-down algorithm could be made to work in signed division, but will underperform the
standard round-up algorithm.

Reference Code

The reference implementation for computing the magic number due to Henry Warren ("Hacker's Delight") is rather dense,
and it may not be obvious how to incorporate the improvements presented here. To ease adoption, we present a reference
implementation written in C that incorporates all known optimizations, including the round-down algorithm.

This new reference implementation is available at
https://raw.github.com/ridiculousfish/libdivide/master/divide_by_constants_codegen_reference.c

Conclusion

The following algorithm is an alternative way to do division by "uncooperative" constants, which may outperform the
standard algorithm that produces an N+1 bit magic number. Given a dividend n and a fixed divisor d, where 0 " n < 2N and
0 < d < 2N, and where the standard algorithm failed to find a N-bit magic number:

1. Consider in turn values of p in the range 0 through , inclusive.
2. If , then we have found a working p. The last value in the range is guaranteed to work (assuming

the standard algorithm fails).

3. Once we have a working p, precompute the magic number , which will be strictly less than 2N.

4. To divide n by d, compute the value q through one of the following techniques:
Compute , OR
Compute . If n+1 may wrap to zero, it is acceptable to use a saturating increment
instead.

5. Perform any remaining shift: .

On a Core i7 x86 processor, a microbenchmark showed that this variant "round down" algorithm outperformed the standard
algorithm in both 32 bit and 64 bit modes by 9% to 17%, and in addition generated shorter code that used fewer registers.
Furthermore, the variant algorithm is no more difficult to implement than is the standard algorithm. The author has provided
a reference implementation and begun some preliminary work towards integrating this algorithm into LLVM, and hopes
other compilers will adopt it.

Footnotes

1. Of course, if n can statically be shown to not equal 2N-1, then the increment can be performed without concern for
modulo overflow. This likely occurs frequently due to the special nature of the value 2N-1.

2. Many processor architectures admit a straightforward saturating increment by use of the carry flag. PowerPC at first
blush appears to be an exception: it has somewhat unusual carry flag semantics, and the obvious approach requires three
instructions:

 li r2, 0
 addic r3, r3, 1
 subfe r3, r2, r3

However PowerPC does admit a non-obvious two-instruction saturating increment. It does not seem to appear in the
standard literature, and for that reason it is provided below. Given that the value to be incremented is in r3, execute:

 subfic r2, r3, -2
 addze r3, r3

The result is in r3. r2 can be replaced by any temporary register; its value can be discarded.

⌊lo d⌋g2

 mod d ≤2N+p 2p

m = ⌊ ⌋2N+p

d

q = (m × n + m)) ≫ N

q = (m × (n + 1)) ≫ N

q = q ≫ p

